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A Survey on Families of Binary Sequences
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In this correspondence, we mention several families of binary m-sequences which are already

introduced in many articles.

Most of the families have three valued non-trivial auto and cross

correlations But in few cases they have five and six valued nontrivial correlations.
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I. INTRODUCTION

It has been well established that families of binary se-
quences with low correlation have important applications
in code-division multiple access (CDMA), communica-
tion systems and cryptographic system([1],[2],[3]). To
check the optimality of the sequence families, we have
Sidelnikov’s bound([9]). It states that for any family of
k binary sequences of period N, if kK > Ni, then

Rmam Z (2Nk - 2)%7

where R4 is the maximum magnitude of corre-
lation values except for the in-phase autocorrelation
value. The well-known Gold’s family ([5]) is a binary
sequence family which satisfies Sidelnikov’s bound.
It has correlations 2™ — 1,—1,—1 + QHTH, where n is
odd. But Gold sequence cannot resist attacks based
on Berlekamp-Massey algorithm due to its small linear
span. So the Gold-like families with larger linear span
were constructed.

Boztas and Kumar[4] discovered the odd case of
Gold-like sequence family. The correlations of their
families are identical to those of Gold sequences, namely

n+1

{on —1,-1,-1+2"}.

For even n, Udaya[13] introduced families of binary se-
quences with correlations 2% —1, —1, —1+£2%, —1425+1
which corresponds to even case of Gold-like sequence
family.

The generalization of Gold-like sequences were done
by Kim and No [7]. They have introduced GKW-like
sequences by using the quadratic form technique and con-
structed families with correlations 2" — 1, -1, -1+ 2"%°
and 2" —1,—1,—1 4 2%, —1 + 23 t¢ respectively, where
n and e are positive integers, e|n.

Later Wang and Qi [14] introdudced two new families
S1 and S5 which are optimal by Sidelnikov bound.
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In their work [10-12], they have combined the trace
forms mentioned in [4, 7] and introduced new families.
Some of them are actually Gold-like family.

II. PRELIMINARIES

Let Fy» be the finite field with 2™ elements. Then the
trace function from Fon to Fom is defined by

where € Fan and m|n. The trace function has the fol-
lowing properties:

L tr] (ax + by) = atry, (x) + btr} (x), for all a,b €
F2’"7377y € FQ";
2. tr? (x2m) = tr? (z), for all z € Fan.

m

Let f(x) be a function from Fon to Fo and A € Fan. The
trace transform F(\) of f(x) is defined by

FO)= 3 (~1f@etey,

zE€Fon

Definition 1. Let x = Z?:l r;a4, where x; € Fo and
a1 = 1,2,.....n, is a basis for Fon over Fy. Then the
function f(x) over Fon to Fy is a quadratic form if it can
be expressed as

f(fE) = f(z mzav) = Z mexixj»
i=1 i=1j=1
where b; ; € Fan.

The quadratic form has been well analized in [8]. We
also recall that the symplectic bilinear form of a quadratic
form f(x) is

B(z,z) = f(z)+ f(2) + f(x + 2) for z,z € Fan.

Finding the dimension of the radical of a quadratic form
is very crucial to find the correlations of binary sequences.
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The radical of the quadratic form f(x) is the number of
solutions of z € Fan to

B(z,z) = f(z)+ f(2) + f(x + 2) =0 for all z € Fan.

The following lemma establishes the relation between the
trace transform and the dimension of the radical of a
quadratic form.

Lemma 1. ( Helleseth and Kumar [6]) Let f(x) be a
quadratic Boolean function on Faon. If the rank of f(x)
is 2h, 2 < 2h < n, then the distribution of the trace
transform values is given by

on—h 22h=1 4 oh=1¢imes
F(A\) =<0, 2" — 22htimes
—on=h  92h=1 _ oh=lyimes

where rank is the co-dimension of the radical of f(x).

All the sequence families considered in this paper are
constructed by using the trace function a(x) = tr}(z)
and some quadratic form b(z) as follows:

C={fi(x)]0<i<2",zeclF}

where
a(vix) +b(x), 0<1<2" -1
fila) = (viz) + b(x) V<
a(z), 1=2"
and {vg, v, ...... ,U2n_1} is an enumeration of the

elements in Fan.

The correlation function between two sequences defined
by fi(x) and f;(x) can be given by the function from Fan
to the set of integers Z as

R; ;(6) = ZmEF;n (_1)fi(w)+'fj (6=)

where ¢ € 5. =Fan \ {0}. R; ;(J) can be expressed as a
trace transform

R ;(8) = Z (—1)tr1 (itvsle) g (@)
z€F;,
- 14 Z (—1)tri @\ +9(@)
TEFan
= —-1+G(\)

where g(x) = b(dz) + b(z) and A = v; + v; € Fan.
Definition 2. Let 2 = m be odd. We define the
boolean quadratic functions p(z) and q(z) by p(xz) =

S @), gle) = AT o),
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Lemma 2. ([4]) The associated symplectic form of p(x)
18

B(z,z) = p(z)+p(2) +plz+ 2) = tr]'[z(tr] (z) + z)].(1)

Definition 3. ( Boztas and Kumar [4]) For an odd in-
teger n =2k 4+ 1> 3, Boztas and Kumar introduced the
following family G of Gold-like sequences

0<i<2" -1

tri(z), i=2"

97,(1') _ {tr?(vix) +p(1‘)7

Theorem 1. ( Boztas and Kumar [4]) For the family G
, the distribution of correlation values is given as follows:

2" — 1, 2" + 1 times

1, 28n—L 192" _ 9" _ 9 times
R; () = —1 4 2FFL 92n=2(92k—1 4 ok—1y yimeg

19kl 92n=2(92k—1 _ okl pimeq

Lemma 3. ([7]) The associated symplectic form of q(z)
18

B(z,2) = q(x) +q(2) + q(z + 2) = tri[2(tre (z) + 2)].(2)

Definition 4. ( Kim and No[7]) Let 2 = m be an odd
integer, where m > 3. Kim and No introduced the fol-
lowing sequences S which generalized the previous family

n(n,. <4< on _
5i(z) = tri(viz) + q(x), O <i<2 1
tri(x),

Theorem 2. (Kim and No [7]) For the family S , the
distribution of correlation values is given as follows:

2" — 1, 2" 4+ 1 times

—1, 2" — 2"7¢) 4+ 1)(22" — 2) times
R'Lv]((;) = nte ( n—e—1 )"752(2 2n ) .

—-14272, (2 +2 2 )(2°" — 2) times

—1-2", (@l o2t E )2 - 2)

In their calculation to find the rank the symplectic
forms (1) and (2) have been used respectively. We have
used those two symplectic form in rather modified form
to construct a family based on two quadratic forms p(A\z)
and ¢(Cx) [11].

Definition 5. Let 2 = m > 3 be odd. We define the
family U of binary sequences by
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(z) = tri(vir) + p(Az) + q(¢x), 0<i<2m—1
T ), i=om

where e is also odd, A\, € Fae and X # 0, # (.

For the correlation property of the family U, we have
the following result.

Theorem 3. ([11])The family U has the following prop-
erties:

1. The mazimal absolute value of the nontrivial corre-

lation of family U is bounded by Ryqr < 1+ 2"3+
and so the family is optimal with respect to Sidel-
nikov bound.

2. The correlation distribution is as follows:

2" — 1, 2" + 1 times
R, (0) -1, 23n=1 4 927 _9n _ 9 times
PRIy —1 4275, (22— 2)(27 2 4+ 2770 times

+1

1275, (22— 2)(2"2 — 27%) times.

Definition 6. Let 2 = m be even. We  de-
fine the Boolean functions p(z) and q(x) by p(x) =

n_1q ! m_ el
212:1 tr?(xz +1)a q(r) = 212:1 tri‘(xQ +1)-

Definition 7. ( Udaya [13]) For an even integer n =
2k > 4 , Udaya introduced the following family G

(o tr7(vz) + pla) + trf (22541), 0<i<2m -1
i) = {tm), i— o

Theorem 4. (Udaya [153]) For the family G , the distri-
bution of correlation values is given as follows:

2" —1, 2™ + 1 times

—1, 22n=l(gn=1 1 9n=2) 1 92" _ 2 times
—142F (@t —2)(2 T + 2571 times
—1-2F (@™l —2)(2" 7 — 2571 times

—1 4 28Tt 22n=l(9n=3 4 9k=2) times

—1 =2kt 92n=l(9n=3 _ 9k=2y pimes.

R;;(0) =

Definition 8. ( Kim and No [7]) Let = = m be an
even integer, where m > 4. Kim and No introduced the
following sequences S with siz-valued correlations.

si(z) = 4 v )+ qlw) +trf (2274, 0<i<2m—1
N () i=2n,
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Theorem 5. ([7]) For the family S , the distribution of
correlation values is given as follows:

2" — 1, 2" + 1 times
—1, 22n=e(Qn _ onT2ey 4 (227 _ 9) times
Ros(5) = —1+21iiii PR $ 2 E ) times
’ —-1-2 g2n—e(gn=2eml _ 975
—142%, (227 — 2277 _2)(2" 7 4 25 " Vtimes
—1-2%, (227 — 22— _ 2)(2" ! — 23 ) times.

In this paper we introduce a new family U which is a
combination of G and S.

Definition 9. Let % = m > 4 be even. We define the
family U of binary sequences by

u-(g;):{”"l( z) +p(x) +q(z), 0<i<2m—1
’ trf (), il o

For the correlation property of the family U, we have

the following result.

Theorem 6. ([12]) The distribution of correlation
values of the family U is given as when e is odd

Correlation (R; j(0))| Number of times it appears
2" —1 2" +1

-1 23n 4 22n _ gntl 4 gey

2n+26—1(2e—1 2n—1 ) _ 2

—142n % (2¢~ )(2n+€— 2)
_1_9n—5%* (2672 — )(2n+e —92)
-1+ 2n—e+1 (225 3 + 26 2)(22n 2n+e)
—1—= 2n76+1 (226 3 _ 9€e— 2)(22n 2n+e)

and when e is even

Correlation (R; j(0))| Number of times it appears

om 1 2 41

—1 2% 4 220 — ol 4 ety
gnte=2(3.9e-1 _gn+2 _3) 9

e

_1+2n—5 (2e—1+2—)(2n+e 1 +2n_2)
-1— 2n7§_2 (2671 3 )(2n+e 1 Lon 2)
—1+27 (278 27 )(2mremt —2m)
—1— 2n7€; (2673 _ 2e; )(2n+efl _ 2n)
-1 + 277.76 (22671 + 2671)(22?7, 2n+e)
—1 —9n-—e (226—1 9e— 1)(2271 2n+e)
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Definition 10. Let n be odd, §; € Fan\{0,1}. We define
n—1

pla) = ¥, 0 (@ + (i) 1),

q(z) = p(x) + p(d2x), where d2 € Fan\{0,1}and 61 # Ja.

Using the rank of p(z) and ¢(z), Wang and Qi [14] has
introduced the following result.

Theorem 7. ([14] Let n be odd, 6, € Fan\{0,1},

n—1
p(z) = 3.2 tri(@? + (61m)2l+1). Then the family
S1={s1;]7=0,1,...,2"} given by

0<i <27 -1

tri(z), i=2".

o y(a) = {tr?(vjw) +pla),

has the following correlation distribution:

Correlation (R; ;(8))|Number of times it appears

2" —1 2" +1

-1 23—l 4 g3n—4 _93n=6 4 92n _9n _ 9
142" (2772 4 2"37 ) (22" — 2203 _9)
12" (2n—2 — 2"57)(22n _ 9273 _ 9)
142" (27" 2" )23

12" (2n—4 —9"3%)92n-3

Definition 11. Let n be even, 61 € Fan\{0,1}.

We define pi(x) = tr?(xQn/zH + (51x)2n/2+1) +
n_ ! 1

S @ 4 (8i2)" ),

q1(z) = pi(z) + p(d2zx), where 62 € Fan\{0,1} and

81 # 0.

Using the rank of p;(z) and ¢;(z), Wang and Qi [14]
has introduced another new family.

Theorem 8. Let n be even, 61 € Fan\{0,1}, ¢(z) =

n n/ n_
trp (22 g (1) A (2 o (512) T Y,
Then the family So = {s2 ;|7 =0,1,...,2"} given by

has the following correlation distribution:

Correlation (R; ;(0))| Number of times it appears

2" —1 2" +1

1 93n—1 _ 93n—3 4 93n—6 _ o3n—8 4
22" — 2

—1+42% (2"t 423 (2t —9)

—1-2% (2"t —28 )2 —2)

14+ Z%Jrl (2n73 + 2%72)(227171 _ 22n74)

—1— 2%4—1 (2n—3 _ 2%—2)(2271—1 _ 2277.—4)

14 0%+2 (275 4 2% ~3)92n—4

11— 2%+2 (2n75 _ 2%73)227174

iftri(1+61)" ") =0 and

Correlation (R; ;(8))|Number of times it appears
2" —1 2" +1
-1 2377,71 _ 23n73 + 2371,76 _ 237178_’__
22" — 2
—1+2% (2"t 42272t
1 2% (anl _ 2%71)227171
-1 +2L2‘+1 (2n73 + 2572)(227171 2
_1_9%+1 (23 — 23 2) (221 _ 9
iftri(146) ) =1
ITII. CONCLUSION

In this article we have seen a quick survey on families
of binary m-sequences with 3,4 and more non-trivial
correlation values. More results can be found in recent
literature. But in order to achieve bigger linear span

many families of quartenary sequences have been intro-
duced.
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