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In this paper, a method to compute the inverse of an interval matrix is studied based on
the modified interval arithmetic and solving system of equations with interval coefficients
using Determinant Method, Jacobi Iterative Method, Crout Method, Cholesky Method.
And also developed a Matlab code for Inverse of an Interval Matrix. If an interval linear
system of equations is solved by existing interval arithmetic method the replacing solution
in interval system of equations, the interval width is more than the interval width of right
hand side intervals. On the other hand, applying modified interval arithmetic the interval
width is less than interval width than previously obtained by existing interval arithmetic.
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1 Introduction

It is well known, that matrices play a major role in
various areas such as science, engineering and tech-
nology, social sciences and many others. In real life,
due to the inevitable measurement inaccuracy, we do
not know the exact values of the measured quanti-
ties; we know, at best, the intervals of possible values.
Consequently, we can not successfully use traditional
classical matrices and hence the use of interval ma-
trices is more appropriate.

Following notations are being used through out the
paper:

• IR = {A = [a1, a2] : a1 ≤ a2 and a1, a2 ∈ R} be
the set of all proper intervals,

• IR = {A = [a1, a2] : a1 > a2 and a1, a2 ∈ R} be
the set of all improper intervals on the real line
R,

• mid-point m(A) = (a1 + a2)/2

• width(or half-width) w(A) = (a2 − a1)/2

• The set of generalized intervals(proper and im-
proper) by D

D = IR ∪ IR = {[a1, a2] : a1, a2 ∈ R}

• dual(A) = dual[a1, a2] = [a2, a1]

• opp{[a1, a2]} = [−a1,−a2]

Interval arithmetic is used with error analysis.

Rounding error analysis : Consider the expres-
sion f(x) = 1− x+ x2 with x = 0.531, i.e with 10−3

precision. Computing this expression with classical
arithmetic gives the result f(x) = 0.610. Now, if
we perform the computations using Interval arith-

metic, we get f(x) = 0.469 + (0.531)2

2 ∈ 0.469 +
[0.281,0.282]2

2 and so f(x) ∈ 0.469 + [0.140, 0.141] =
[0.609, 0.610]. This guarantees that the exact result
is within the interval [0.609, 0.610].

1.1 Existing Interval Arithmetic

For X = [x1, x2], Y = [y1, y2]

• X
⊙
Y = {x

⊙
y : x ∈ X, y ∈ Y },for

⊙
∈

{+,−, ·, /}

• X + Y = [x1 + y1, x2 + y2]

• X − Y = [x1 − y2, x2 − y1]

• X · Y = [minT,maxT ] , where T = (x1y1, x1y2,
x2y1, x2y2)

• X
Y = X ·

(
1
Y

)
, where 1

Y = {y : 1
y ∈ Y } =[

1
y2
, 1
y1

]
1.2 Modified Interval Arithmetic

For X = [x1, x2], Y = [y1, y2] ∈ D and for
∗ ∈ {+,−, ·, /}
we define X∗Y = [m(X)∗m(Y )−k,m(X)∗m(Y )+k]
where k =min{(m(X)∗m(Y ))−α, β−(m(X)∗m(Y ))}
α and β are the end points of the interval X ∗ Y
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under the existing interval arithmetic. In particular

(i) Addition :
X + Y = [x1, x2] + [y1, y2] = [m(X) +m(Y )
− k,m(X) +m(Y ) + k]

where k =

{
(y2 + x2)− (y1 + x1)

2

}

(ii) Subtraction :
X − Y = [x1, x2]− [y1, y2] = [m(X)−m(Y )
− k,m(X)−m(Y ) + k]

where k =

{
(y2 + x2)− (y1 + x1)

2

}

(iii)Multiplication :
X · Y = [x1, x2] · [y1, y2] = [m(X) ·m(Y )− k,
m(X) ·m(Y ) + k]
where k =min{(m(X)·m(Y)) - α, β− (m(X)·m(Y))}
α =min(x1y1, x1y2, x2y1, x2y2) and
β =max(x1y1, x1y2, x2y1, x2y2)

(iv) Division :

1

X
=

1

[x1, x2]
=

[
1

m(X)
− k, 1

m(X)
+ k

]

where k = min

{
1

x2

(
x2 − x1
x1 + x2

)
,

1

x1

(
x2 − x1
x1 + x2

)}
and 0 6∈ [x1, x2]

2 Interval Matrix

An interval matrix AI is a matrix whose elements
are intervals.

AI=

(
[1, 2] [3, 4]
[5, 6] [4, 7]

)
: AI = [A,A] =

{A; A ≤ A ≤ A}

Here, A =

(
1 3
5 4

)
, A =

(
2 4
6 7

)

2.1 General Interval Matrix

AI =


aI11 aI12 ... aI1n
aI21 aI22 ... aI2n
... ... ... ...
aIm1 aIm2 ... aImn

 = (aIij)1≤i≤m, 1≤j≤n

2.2 Mid Point of a General Interval
Matrix

m(AI) =


m(aI11) m(aI12) ... m(aI1n)
m(aI21) m(aI22) ... m(aI2n)
... ... ... ...

m(aIm1) m(aIm2) ... m(aImn)



2.3 Some Interval Matrix Operations

If AI , BI ∈ Dm×n, XI ∈ Dn, αI ∈ D

• αIAI = αI(aIij)1≤i≤m, 1≤j≤n

• AI +BI = (aIij + bIij)1≤i≤m, 1≤j≤n

• AI − BI = (aIij −
bIij)1≤i≤m, 1≤j≤n and 0 ifAI = BI

• AIBI = (
∑n

k=1 a
I
ikb

I
kj)1≤i≤m, 1≤j≤n

• AIXI = (
∑n

j=1 a
I
ijX

I)1≤i≤m

3 Properties of an Interval Ma-
trix

The determinant of a square interval matrix is an
interval number.
i.e. detAI = |AI | =

∑
aIijA

I
ij , where AI

ij is the

cofactor of aIij with usual meaning.

Definition 3.1. A square interval matrix AI is said
to be non singular or regular if |AI | is invertible (i.e.
0 /∈ |AI |). Alternatively, a square interval matrix
AI is said to be invertible if |AI | is invertible (i.e.
0 /∈ |AI |).

Definition 3.2. Let AI be a square interval matrix.
The adjoint matrix AI∗ of AI is the transpose of the
matrix of cofactors of the elements of AI . That is
AI∗ = adj( AI) = (bIij), where bIij = |AI

ji|, for all
i, j = 1, 2, 3, ...., n.

Definition 3.3. For any AI ∈ IRn×n if |AI | is in-
vertible, then the common solution of equations AIXI

= II and XIAI = II is called the inverse of AI and
is denoted by

AI−1

= adj(AI)
|AI |

If AI is invertible, then m( AI−1

) = [m(AI)]−1.

Theorem 3.1. let AI∗ be the adjoint matrix of AI

then AIAI∗ = AI∗AI = |AI |II .

Proof. let AI = (aij)
I , AI∗ = (bij)

I so that (bij)
I =

(Aji)
I . Then for i, j = 1, 2, 3...., n, we have

(AIAI∗)ij =

n∑
k=1

aIikb
I
kj =

n∑
k=1

aIikA
I
jk = |AI |δIij = |AI |II

and

(AI∗AI)ij =

n∑
k=1

bIika
I
kj =

n∑
k=1

aIkjA
I
ki = |AI |δIji = |AI |II

δIji =

{
1 i = j
0 i 6= j

}
from both the equations we see that AIAI∗ =
AI∗AI = |AI |II
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Theorem 3.2. (i) If AI is invertible, then the ma-
trix equation AIXI = II and AIXI = II both
possesses a common solution XI = adj (AI) /
|AI |.

(ii) If atleast one of the equation is solvable for XI

then |AI | is invertible and so both equations are
solvable and possesses a common solution XI =
adj (AI) / |AI |.

Proposition 3.1. let AI = [A,A] ∈ Rn×n if A and

A are regular and A−1 ≥ 0, A
−1 ≥ 0 then AI is

regular and AI−1 = [A−1, A
−1

] ≥ 0.

4 Example: Inverse of an Inter-
val Matrix

Calculate inverse of the given interval matrix.

AI=

(
[1, 3] [0, 1]
[0, 1] [3, 5]

)
First we check that this interval matrix is regular
or not. So we find determinant of the given interval
matrix by using modified interval arithemetic.
|AI | = [1,3][3,5] - [0,1][0,1]
let aI1 = [1,3], aI2 = [3,5], aI3 = [0,1],
aI4 = [0,1]
m(aI1) = 2, m(aI2) = 4, m(aI3) = 1/2, m(aI4) = 1/2
aI1 a

I
2 = [1,3][3,5], α =min{3, 5, 9, 15} = 3 ,

β = max{3,5,9,15} = 15
k = min{8 - 3, 15 - 8} = 5
[m(aI1) ·m(aI2)− k,m(aI1) ·m(aI2) + k] = [3, 13]
same as [0,1][0,1] = [0,1/2]
[3, 13]− [0, 1/2] = [5/2, 13] > 0
so this is a regular interval matrix.

AI−1 = adj(AI)
|AI |

AI−1 = 1
[5/2,13] ×

(
[3, 5] [−1, 0]

[−1, 0] [1, 3]

)
by using modified interval arithemetic-

1
[5/2,13] =

[
31

(13×31) ,
73

(13×31)

]
AI−1

=

 [3, 5] ×
[

31
(13×31)

, 73
(13×31)

]
[−1, 0] ×

[
31

(13×31)
, 73
(13×31)

]
[−1, 0] ×

[
31

(13×31)
, 73
(13×31)

]
[1, 3] ×

[
31

(13×31)
, 73
(13×31)

]


[3, 5]×
[

31
(13×31) ,

73
(13×31)

]
=
[

93
(13×31) ,

323
(13×31)

]
[-1,0]×

[
31

(13×31) ,
73

(13×31)

]
=
[
−52

(13×31) , 0
]

[1,3]×
[

31
(13×31) ,

73
(13×31)

]
=
[

31
(13×31) ,

177
(13×31)

]
AI−1 =

[ 93
(13×31) ,

323
(13×31)

] [
−52

(13×31) , 0
][

−52
(13×31) , 0

] [
31

(13×31) ,
177

(13×31)

]

5 MATLAB Code For Inverse
Of Interval Matrix

f unc t i on Z = invs1 (a , b , c , d , e , f , g , h )
i = ( a+b ) / 2 ;
j = ( g+h ) / 2 ;
k = [ a∗g , a∗h , b∗g , b∗h ] ;
l = min ( k ) ;
m = max( k ) ;
n = [ i ∗ j−l ,m−i ∗ j ] ;
o = min (n ) ;
p = [ i ∗ j−o , i ∗ j+o ] ;
q = ( c+d ) / 2 ;
r = ( e+f ) / 2 ;
s = [ c∗e , c∗ f , d∗e , d∗ f ] ;
t = min ( s ) ;
u = max( s ) ;
v = [ q∗ r−t , u−q∗ r ] ;
w = min ( v ) ;
x = [ q∗ r−w, q∗ r+w ] ;
z = ( ( i ∗ j−o)+( i ∗ j+o ) ) / 2 ;
A = ( ( q∗ r−w)+(q∗ r+w) ) / 2 ;
B =
( ( ( i ∗ j+o)+(q∗ r+w))−(( i ∗ j−o)+(q∗ r−w) ) ) / 2 ;
C = [ z−A−B, z−A+B ] ;
D = [ g , h,−d,−c ,− f ,−e , a , b ] ;
E = ( z−A−B+z−A+B) / 2 ;
a1 = (1/( z−A+B) ) ∗ ( ( z−A+B)−(z−A−B) )
/ ( ( z−A+B)+(z−A−B) ) ;
a2 = (1/( z−A−B) ) ∗ ( ( z−A+B)−(z−A−B) )
/ ( ( z−A+B)+(z−A−B) ) ;
F = [ a1 , a2 ] ;
G = min (F ) ;
H = [ ( 1 /E)−G, ( 1 /E)+G] ;
I = ( ( ( 1 /E)−G)+((1/E)+G) ) / 2 ;
J = ( g+h ) / 2 ;
K = [ ( ( 1 /E)−G)∗g , ( ( 1 /E)−G)∗h ,
( (1/E)+G)∗g , ( ( 1 /E)+G)∗h ] ;
L = min (K) ;
M = max(K) ;
N = [ I ∗J−L ,M−I ∗J ] ;
O = min (N) ;
P = [ I ∗J−O, I ∗J+O] ;
Q = (−d−c ) / 2 ;
R = [ ( ( 1 /E)−G)∗(−d ) , ( ( 1 /E)−G)∗(− c ) ,
( (1/E)+G)∗(−d ) , ( ( 1 /E)+G)∗(− c ) ] ;
S = min (R) ;
T = max(R) ;
U = [ I ∗Q−S ,T−I ∗Q] ;
V = min (U) ;
W = [ I ∗Q−V, I ∗Q+V ] ;
X = (− f−e ) / 2 ;
Y = [ ( ( 1 /E)−G)∗(− f ) , ( ( 1 /E)−G)∗(− e ) ,
( (1/E)+G)∗(− f ) , ( ( 1 /E)+G)∗(− e ) ] ;
aa = min (Y) ;
ab = max(Y) ;
ac = [ I ∗X−aa , ab−I ∗X ] ;
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ad = min ( ac ) ;
ae = [ I ∗X−ad , I ∗X+ad ] ;
a f = ( a+b ) / 2 ;
ag = [ ( ( 1 /E)−G)∗a , ( ( 1 /E)−G)∗b ,
( (1/E)+G)∗a , ( ( 1 /E)+G)∗h ] ;
ah = min ( ag ) ;
a i = max( ag ) ;
a j = [ I ∗af−ah , ai−I ∗ a f ] ;
ak = min ( a j ) ;
a l = [ I ∗af−ak , I ∗ a f+ak ] ;
Z = [P,W; ae , a l ] ;
end

>> Z = invs1 ( 1 , 3 , 0 , 1 , 0 , 1 , 3 , 5 )

Z =

0.2308 0 .8015
−0.1290 0
−0.1290 0 0 .0769

0 .4392
>> A=e v a l i n ( symengine , ’Dom : :
I n t e r v a l ( [ 0 . 2 3 0 8 , 0 . 8 0 1 5 ] ) ’ )

A =

[ 0 . 2 3 0 8 , 0 . 8 0 1 5 ]

>> B=e v a l i n ( symengine , ’Dom : :
I n t e r v a l ( [−0.1290 , 0 ] ) ’ )

B =

[−0.129 , 0 ]

>> C=e v a l i n ( symengine , ’Dom : :
I n t e r v a l ( [−0.1290 , 0 ] ) ’ )

C =

[−0.129 , 0 ]

>> D=e v a l i n ( symengine , ’Dom : :
I n t e r v a l ( [ 0 . 0 7 6 9 , 0 . 4 3 9 2 ] ) ’ )

D =

[ 0 . 0 7 6 9 , 0 . 4 3 9 2 ]

>> E = [A, B;C,D]

E =

[ [ 0 . 2 3 0 8 , 0 . 8 0 1 5 ] , [−0.129 , 0 ] ]
[ [−0.129 , 0 ] , [ 0 . 0 7 6 9 , 0 . 4 3 9 2 ] ]

6 Methods to Solve System of
Linear Equations Coefficient
as Intervals

6.1 Determinant Method

Theorem 6.1. Let AIXI = BI be a system of lin-
ear equations involving interval numbers. If the (n × n)
interval matrix AI is invertible then it is possible to
find a smallest box XI = (xI

1, xI
2, ..., xI

n), where each

xI
i = |AI(i)|

|AI | , AI(i) is the interval matrix obtained when

the ith column of AI is replaced by the vector BI = (bI1,
bI2, ..., bIn).

Proof. Given that AI is invertible, multiply both
side of the system AIXI = BI by AI−1

. we have

AI−1

AIXI = AI−1

BI

IIXI = AI−1

BI

XI = AI−1

BI

XI = AIBI

|AI |

i.e.


xI1
xI2
...
xIn

 = 1
|AI |×


aI11 aI12 ... aI1n
aI21 aI22 ... aI2n
... ... ... ...
aIn1 aIn2 ... aInn



bI1
bI2
...
bIn



let us consider an example :

AI=

 [3.7, 4.3] [−1.5,−0.5] [0, 0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0, 0] [−1.5,−0.5] [3.7, 4.3]

,

bI=

[−14, 14]
[−9, 9]
[−3, 3]


|AI | = [37.103, 74.897]

|AI(1)| =

∣∣∣∣∣∣
[−14, 14] [−1.5,−0.5] [0, 0]
[−9, 9] [3.7, 4.3] [−1.5,−0.5]
[−3, 3] [−1.5,−0.5] [3.7, 4.3]

∣∣∣∣∣∣ =

[-317.64,317.64]

|AI(2)| =

∣∣∣∣∣∣
[3.7, 4.3] [−14, 14] [0, 0]

[−1.5,−0.5] [−9, 9] [−1.5,−0.5]
[0, 0] [−3, 3] [3.7, 4.3]

∣∣∣∣∣∣ =

[-271.86,271.86]

|AI(3)| =

∣∣∣∣∣∣
[3.7, 4.3] [−1.5,−0.5] [−14, 14]

[−1.5,−0.5] [3.7, 4.3] [−9, 9]
[0, 0] [−1.5,−0.5] [−3, 3]

∣∣∣∣∣∣ =

[-144.77,144.77]

then by the theorem -

xI1 = |AI(1)|
|AI | = [-6.988,6.988]

xI2 = |AI(2)|
|AI | = [-5.981,5.981]

xI3 = |AI(3)|
|AI | = [-3.185,3.185]
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6.2 Jacobi Iterative Method

let AIXI = BI ; where AI is an interval matrix and
XI and BI are interval vectors.

AI =


aI11 aI12 ... aI1n
aI21 aI22 ... aI2n
... ... ... ...
aIn1 aIn2 ... aInn

 = (aIij)1≤i≤n, 1≤j≤n

XI =


xI1
xI2
...
xIn

 =(xi
I)1≤i≤n ;

BI =


bI1
bI2
...
bIn

 = (bIi )1≤i≤n

Iterations :

x
I(n+1)
1 =

bI1
aI
11
− aI

12x
I(n)
2

aI
11
− ...− aI

1nx
I(n)
n

aI
11

x
I(n+1)
2 =

bI2
aI
22
− aI

21x
I(n)
1

aI
22
− ...− aI

2nx
I(n)
n

aI
22..............................................................

x
I(n+1)
n =

bIn
aI
nn
− aI

n1x
I(n)
1

aI
nn

− ...− aI
n,n−1x

I(n)
n−1

aI
nn

Example :

[3.7, 4.3]xI1 + [−1.5,−0.5]xI2 + [0, 0]xI3 = [−14, 14]

[−1.5,−0.5]xI
1 + [3.7, 4.3]xI

2 + [−1.5,−0.5]xI
3 = [−9, 9]

[0, 0]xI
1 + [−1.5,−0.5]xI

2 + [3.7, 4.3]xI
3 = [−3, 3]

First Iteration :
first we take x

I(0)
1 = [0, 0], x

I(0)
2 = [0, 0], x

I(0)
3 = [0, 0]

x
I(1)
1 = 1

[3.7,4.3]
× ([−14, 14]− [−1.5,−0.5]x

I(0)
2

− [0, 0]x
I(0)
3 )

x
I(1)
1 = 1

[3.7,4.3]
× ([−14, 14]) = [−3.7436, 3.7436]

(by using modified interval arithemetic)

x
I(1)
2 = 1

[3.7,4.3]
× ([−9, 9]− [−1.5,−0.5]x

I(0)
1

− [−1.5,−0.5]x
I(0)
3 )

x
I(1)
2 = 1

[3.7,4.3]
× ([−9, 9]) = [−2.4066, 2.4066]

x
I(1)
3 = 1

[3.7,4.3]
× ([−3, 3]− [−1.5,−0.5]x

I(0)
2

− [0, 0]x
I(0)
3 )

x
I(1)
3 = 1

[3.7,4.3]
× ([−3, 3]) = [−0.8022, 0.8022]

Second Iteration :
x
I(2)
1 = 1

[3.7,4.3]
× ([−14, 14]− [−1.5,−0.5]x

I(1)
2

− [0, 0]x
I(1)
3 )

x
I(2)
1 = [0.2326, 0.2674]× ([−14, 14]− [−1.5,−0.5]
× [−2.4066, 2.4066]− [0, 0]× [−0.8022, 0.8022])

x
I(2)
1 = [−4.7089, 4.7089]

x
I(2)
2 = 1

[3.7,4.3]
× ([−9, 9]− [−1.5,−0.5]x

I(1)
1

− [−1.5,−0.5]x
I(1)
3 )

x
I(2)
2 = [0.2326, 0.2674]× ([−9, 9]− [−1.5,−0.5]
× [−3.7436, 3.7436]− [−1.5,−0.5]× [−0.8022, 0.8022])

x
I(2)
1 = [−4.2299, 4.2299]

x
I(2)
3 = 1

[3.7,4.3]
×( [-3,3] - [-1.5, -0.5] x

I(1)
2 − [0, 0]x

I(1)
1 )

x
I(2)
3 = [0.2326, 0.2674]× ([−3, 3]− [−1.5,−0.5]
× [−2.4066, 2.4066]− [0, 0]× [−3.7436, 3.7436])

x
I(2)
3 = [−1.7675, 1.7675]

Third Iteration :
x
I(3)
1 = 1

[3.7,4.3]
×([−14, 14]−[−1.5,−0.5]x

I(2)
2 −[0, 0]x

I(2)
3 )

x
I(2)
1 = [0.2326, 0.2674]× ([−14, 14]− [−1.5,−0.5]
× [−4.2299, 4.2299]− [0, 0]× [−1.7675, 1.7675])

x
I(3)
1 = [−5.4402, 5.4402]

x
I(3)
2 = 1

[3.7,4.3]
× ([−9, 9] − [−1.5,−0.5]x

I(2)
1 −

[−1.5,−0.5]x
I(2)
3 )

x
I(3)
2 = [0.2326, 0.2674] × ([−9, 9] − [−1.5,−0.5] ×

[−4.7089, 4.7089]− [−1.5,−0.5]× [−1.7675, 1.7675])

x
I(3)
2 = [−5.0043, 5.0043]

x
I(3)
3 = 1

[3.7,4.3]
× ([−3, 3]− [−1.5,−0.5]x

I(2)
2 − [0, 0]x

I(2)
1 )

x
I(3)
3 = [0.2326, 0.2674] × ([−3, 3] − [−1.5,−0.5] ×

[−4.2299, 4.2299]− [0, 0]× [−4.7089, 4.7089])

x
I(3)
3 = [−2.4961, 2.4986]

after three iterations we get the solution -
xI
1 = [−5.4402, 5.4402]

xI
2 = [−5.0043, 5.0043]

xI
3 = [−2.4961, 2.4986]

Convergence of Jacobi Method :
for convergence, matrix will be digonally dominant.
|aI

11| ≥ |aI
12|+ |aI

13|
|aI

22| ≥ |aI
21|+ |aI

23|
|aI

33| ≥ |aI
31|+ |aI

32|
min|aI

11| = 3.7 ; max|aI
12| + max|aI

13| = 1.5+0 = 1.5 ;
min|aI

11| > max|aI
12| + max|aI

13| this implies
|aI

11| > |aI
12|+ |aI

13| in all cases.
simillarly,
min|aI

22| = 3.7 ; max|aI
21| + max|aI

23| = 1.5+1.5 = 3 ;
min|aI

22| > max|aI
21| + max|aI

23|
min|aI

33| = 3.7 ; max|aI
31| + max|aI

32| = 0+1.5 = 1.5 ;
min|aI

33| > max|aI
31| + max|aI

32|
so matrix is digonally dominant. so this is convergent

6.3 Crout Method

AIXI = BI

MI ′= [AI ′ : BI ′]; here MI ′ is a Auxiliary Matrix.

MI ′ =


aI
11

′
aI
12

′
... aI

1n

′
: bI1

′

aI
21

′
aI
22

′
... aI

2n

′
: bI2

′

... ... ... ... : :

aI
n1

′
aI
n2

′
... aI

nn

′
: bIn

′

 =

(aI
ij

′)
1≤i≤n, 1≤j≤n

Methodology :

• when i≥ j; aij
I ′ = aI

ij -
∑j−1

k=1 a
I
ik

′
aI
kj

′

when i<j ; aI
ij

′
= (aI

ij -
∑i−1

k=1 a
I
ik

′
aI
kj

′
) × 1

aI
ii
′

• bIi
′

= (bIi -
∑i−1

k=1 a
I
ik

′
bIk
′
) × 1

aI
ii
′

• xI
i = bIi

′
-
∑n

k=i+1 a
I
ik

′
xI
k

Example :

AI=

 [3.7, 4.3] [−1.5,−0.5] [0, 0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0, 0] [−1.5,−0.5] [3.7, 4.3]

, bI=
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[−14, 14]
[−9, 9]
[−3, 3]


apply above process - we get

MI ′=

 [3.7, 4.3] [−0.3837,−0.1163] [0, 0] [−3.7436, 3.7436]
[−1.5,−0.5] [3.2582, 4.2418] [−0.4155,−0.1179] [−4.3495, 4.3495]

[0, 0] [−1.5,−0.5] [3.2256, 4.2410] [−2.8573, 2.8573]



xI
3 = bI3

′
= [-2.8513, 2.8573]

xI
2 = bI2

′
- aI

23

′
xI
3 = [-5.5367, 5.5367 ]

xI
1 = bI1

′
- aI

12

′
xI
2 -aI

13

′
xI
3 = [-5.8680, 5.8680]

6.4 Cholesky Method

let AIXI = BI

Interval Matrix AI can be written as product of lower
and upper triangular interval matrix.

aI
11 aI

12 ... aI
1n

aI
21 aI

22 ... aI
2n

... ... ... ...
aI
n1 aI

n2 ... aI
nn

 =


lI11 0 ... 0
lI21 lI22 ... 0
... ... ... ...
lIn1 lIn2 ... lInn



×


1 lI12 ... lI1n
0 1 ... lI2n
... ... ... ...
0 0 ... 1


LIUIXI = BI

let UIXI = CI =⇒ LICI = BI

Example :

AIXI = BI

 [3.7, 4.3] [−1.5,−0.5] [0, 0]
[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]

[0, 0] [−1.5,−0.5] [3.7, 4.3]

×
 xI

1

xI
2

xI
3


=

[−14, 14]
[−9, 9]
[−3, 3]


 [3.7, 4.3] [−1.5,−0.5] [0, 0]

[−1.5,−0.5] [3.7, 4.3] [−1.5,−0.5]
[0, 0] [−1.5,−0.5] [3.7, 4.3]


=

 lI11 0 0
lI21 lI22 0
lI31 lI32 lI33

 ×
 1 lI12 lI1n

0 1 lI23
0 0 1


=

 lI11 lI11l
I
12 lI11l

I
13

lI21 lI21l
I
12 + lI22 lI21l

I
13 + lI22l

I
23

lI31 lI31l
I
12 + lI32 lI31l

I
13 + lI32l

I
23 + lI33


by comparision
lI11 = [3.7, 4.3] ; lI12 = [−0.3837,−0.1163] ; lI13 = [0, 0]
lI21 = [−1.5,−0.5] ; lI22=[3.2582, 4.2418];
lI23 = [−0.4155,−0.1179]
lI31 = [0, 0] ; lI32 = [−1.5,−0.5] ; lI33 = [3.2256, 4.2256]

AI =

 [3.7, 4.3] [0, 0] [0, 0]
[−1.5,−0.5] [3.2582, 4.2418] [0, 0]

[0, 0] [−1.5,−0.5] [3.2256, 4.2410]


×

[1, 1] [−0.3837,−0.1163] [0, 0]
[0, 0] [1, 1] [−0.4155,−0.1179]
[0, 0] [0, 0] [1, 1]



LIUIXI =

[−14, 14]
[−9, 9]
[−3, 3]


UIXI = CI

LICI =

[−14, 14]
[−9, 9]
[−3, 3]


 [3.7, 4.3] [0, 0] [0, 0]

[−1.5,−0.5] [3.2582, 4.2418] [0, 0]
[0, 0] [−1.5,−0.5] [3.2256, 4.2410]


×

 cI1
cI2
cI3

=

[−14, 14]
[−9, 9]
[−3, 3]


solve these equations by using modified interval
arithemetic. we get

cI1 = [−3.7436, 3.7436] ; cI2 = [−4.3495, 4.3495] ;
cI3 = [−2.8573, 2.8573]

CI = UIXI

[1, 1] [−0.3837,−0.1163] [0, 0]
[0, 0] [1, 1] [−0.4155,−0.1179]
[0, 0] [0, 0] [1, 1]


×

 xI
1

xI
2

xI
3


solving equations we get -
xI
1 = [-5.8680,5.8680]

xI
2 = [-5.5367,5.5367]

xI
3 = [-2.8573,2.8573]

7 Conclusion

In this paper, we have derived the inverse of an inter-
val matrix using modified interval arithmetic and devel-
oped matlab code. Then, we have calculated solution of
system of equations with interval coefficient using Deter-
minant Method, Jacobi Iterative Method, Crout Method
and Cholesky Method.
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