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Inverse of Interval Matrix and Solution of System of
Equations with Interval Coefficient (Using Modified
Interval Arithmetic)
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In this paper, a method to compute the inverse of an interval matrix is studied based on
the modified interval arithmetic and solving system of equations with interval coefficients
using Determinant Method, Jacobi Iterative Method, Crout Method, Cholesky Method.
And also developed a Matlab code for Inverse of an Interval Matrix. If an interval linear
system of equations is solved by existing interval arithmetic method the replacing solution
in interval system of equations, the interval width is more than the interval width of right
hand side intervals. On the other hand, applying modified interval arithmetic the interval
width is less than interval width than previously obtained by existing interval arithmetic.
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1 Introduction

It is well known, that matrices play a major role in
various areas such as science, engineering and tech-
nology, social sciences and many others. In real life,
due to the inevitable measurement inaccuracy, we do
not know the exact values of the measured quanti-
ties; we know, at best, the intervals of possible values.
Consequently, we can not successfully use traditional
classical matrices and hence the use of interval ma-
trices is more appropriate.

Following notations are being used through out the
paper:

o IR = {A=aj,az] : a1 < az and a;,az € R} be
the set of all proper intervals,

o IR = {A = [a,as] : a; > ay and a1,az € R} be
the set of all improper intervals on the real line
R,

e mid-point m(A) = (a1 + a2)/2
e width(or half-width) w(A) = (a2 — a1)/2

e The set of generalized intervals(proper and im-
proper) by D

D=IRUIR = {[a;,az] : a1,az € R}

e dual(A) = dual[ay, as] = [az,a1]

opp{a1, az]} = [—a1, —a2]
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Interval arithmetic is used with error analysis.

Rounding error analysis : Consider the expres-
sion f(z) =1— 2+ 2? with z = 0.531, i.e with 1073
precision. Computing this expression with classical
arithmetic gives the result f(r) = 0.610. Now, if

we perform the computations using Interval arith-
(0.531)2

metic, we get f(r) = 0.469 + ==~ € 0.469 +

w and so f(x) € 0.469 + [0.140,0.141] =
[0.609,0.610]. This guarantees that the exact result
is within the interval [0.609,0.610].

1.1 Existing Interval Arithmetic
For X = [.’II]_,ZL‘Q], Y = [ylayQ]

e XQOY ={zQuy : 2z € X,y € Y}hfor (O €
{+577'7/}

o X +Y =[z1+y1, 22+ y2]

X -Y =[z1 —y2,22 — 1]

X Y = [minT maxT] , where T = (z1y1, T1y2,
TaY1, T2Y2)

- X (3).

X
Y
& 4]
1.2 Modified Interval Arithmetic

For X = [z1,22], ¥ = [y1,92] € D and for
* € {+7 5 /}

we define XY = [m(X)«m(Y)—k,m(X)«m(Y)+k]
where & =min{(m(X)*m(Y))—a, f—(m(X)*m(Y))}
«a and [ are the end points of the interval X x Y

where 3 = {y:
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under the existing interval arithmetic. In particular

(i) Addition :
X +Y = [y, 3] + [y1,y2] = [m(X) +m(Y)
—k,m(X) +m(Y) + k]

where k = {(y2 + ) . (1 + 1) }

(ii) Subtraction :
X =Y = [z1,22] — [y1,92] = [m(X) = m(Y)
—k,m(X) —m(Y) + k]

k:{(yz+x2)—(y1+x1)}

h
where 5

(iii)Multiplication :

XY = [wn,zs] - [y1,90] = [m(X) - m(Y) — k.
m(X) -m((Y) + k]

where k =min{(m(X) m(Y)) - o, f— (m(X)m(Y))}
a =min(x1y1, 1Y, T2y1, T2y2) and

B =max(x1y1, T1Y2, T2Y1, T2Y2)

(iv) Division :

11 [ 1 1
X [.’El,xg]

. 1 To — T1 1 T2 — 1
where k=min{ — ( —— |, — | ———
To \T1 + T2 T1 \ X1+ T2

and 0 & [z, x2)

2 Interval Matrix

An interval matrix A! is a matrix whose elements
are intervals.

— [172] [374] . Al —
A= (5.9 [4,7]> i
{4; A< A< A}

1 3\ — 2 4
Here, A = 5 4>,A: (6 7)

2.1 General Interval Matrix

I I I
aIn a}Q aip
Al — ag1 Qg2 ... Ay _(aI) ) )
- = U5 )1<i<m, 1<j<n
I I I
Gl Qg o Qpon

2.2 Mid Point of a General Interval
Matrix
m(af;) m(ai,) m(a,)
Ay — | mlad) miek) . miad,)
maly) mlay) . mlal,,)

2.3 Some Interval Matrix Operations
If Al Bl e D™ X eD” of €D

o of AT = o (af;)1<icm, 1<j<n

o AT+ B = (af; + b];)1<i<m, 1<j<n

o Al - B! = (a{j —
b{j)lgigm, 1<j<n and O ifAI = BI

ATBT = (Xh_y afibiy)1<icm, 1<j<n

ATXT = (7 afi X i<icm

3 Properties of an Interval Ma-
trix

The determinant of a square interval matrix is an
interval number.
ie. detAl = |Al| = Zai[jAI

ij >
cofactor of afj with usual meaning.

where A} is the

Definition 3.1. A square interval matriz AT is said
to be non singular or reqular if |AY| is invertible (i.e.
0 ¢ |AT|). Alternatively, a square interval matriz
Al is said to be invertible if |Al| is invertible (i.e.

0 ¢ |AT]).

Definition 3.2. Let Al be a square interval matriz.
The adjoint matriz A™ of Al is the transpose of the
matriz of cofactors of the elements of Al. That is
A" = adj( A") = (bl;), where bl; = |AL], for all
,j=1,2,3,.....n.

Definition 3.3. For any AT € IR™™" if |Al| is in-
vertible, then the common solution of equations AT X'
=1I" and XTAT = I" is called the inverse of AT and
is denoted by

1=t _ adi(a”)
AT =TT

If AT is invertible, then m( Arl) = [m(AD)]~L.

Theorem 3.1. let A™ be the adjoint matriz of AL
then ATAT* = AT* AT = |Al|T1.

Proof. let AT = (a;;)", A™ = (b;;)! so that (b;;)! =
(A;i)!. Then for i,j = 1,2,3....,n, we have

(AIAI*)ij = Zaz[k'bij = Zaz‘IkA§k = |AI|5ZIJ' = |AI|II
k=1 k=1

and

(AI*AI)ij = Zbilkaij = ZalijAléi = |AI|5JI'z' = |AI|II
k=1 k=1

)1 i=g
5ﬁ‘{0 i#)

from both the equations we see that ATAT* =
Al AL = AT 0
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Theorem 3.2. (i) If Al is invertible, then the ma- O
triz equation ATXT = I and ATXT = I' both
possesses a common solution X! = adj (AY) /

A1)

function Z =

(ii) If atleast one of the equation is solvable for X!
then |Al| is invertible and so both equations are

solvable and possesses a common solution X! =
adj (A") / |AT].

E — B e e

Proposition 3.1. let AT = [A, A] e R™™™ if A and

>0, A ZOthenAI‘
AL A >0

A are reqular and A™!
reqular and AT =

4 Example: Inverse of an Inter-
val Matrix

Calculate inverse of the given interval matrix.

Al ([1,3] [0, 1])

[0,1] [3,5]

First we check that this interval matrix is regular
or not. So we find determinant of the given interval
matrix by using modified interval arithemetic.
|AT| = [1,3] [3,5] [0,1][0,1]
let af = [1,3], al = [3,5], af = [0,1],
al = [0,1]

(al) =2, m(ay) = 4, m(a3) = 1/2, m(af) = 1/2
al al = [1,3][3,5], mln{3 5,9,15} =3,
8 = max{3,5,9,15} = 15
k =min{8-3,15-8} =5
[m(ai) - m(az) — k,m(ai) -
same as [0,1][0,1] = [0,1/2]
[3,13] = [0,1/2] =[5/2,13] > 0
so this is a regular interval matrix.

[3v 5} [_1’ 0}

) ([—1,01 1,3] >

by using modified interval arithemetic-
31
(13x31)"

((i

—~ DN~ =
||/—\

m(ad) + k] = [3,13]

~FNa-OQH s~ OJdQ~TOrEN X =2 <2 +nw =0T 0B

(

-1 _ adj(Ah)

I
A [AT]

Al = [5/2,13]

1 73
5/2,13] — [ (13x31)]

~TWOLWOzZE

(

[—1,0] x [

[1,3] x [

31 7
(13x31) ' (183x31)

o)

31 73
(13x31)° (13x31)

s 31 73
ar-1_ [ B {(13><31)’ (13><31)]
[=1,0] x (13%}31)' (137><331)

31 73 _ 93 323
[3,5] % [(13x31)’ (13><31)} = [(13x31)’ (13><31):|
31 73 _
[-1,0]x [(13><31)’ (13><31)] = [ 0}

31 73 _ 31 177
[1,3]% [(13x31)’ (13><31)} = [(13x31)’ (13><31)}

{ 93 323 } { 0}
(13x31)° (13x31)

—52 0} [ 31 177 }
(13x31)° (13x31)’ (13x31)

—52
(13x31)’

~HKMHE<am

(

—52
(13x31)°

oo
T o

Al—l —

7
o
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MATLAB Code For Inverse
Of Interval Matrix

invsl(a,b,c,d,e,f,g,h)
(atb)/2;

(g+h)/2;
[axg,axh,bxg bxh];
min(k);

max (k) ;

[i%j—1 ,m-ixj];

min (n);
[i*xj—0,ixj40];
(c+d)/2;

(e+1) /2.
[cxe,cxf dxe, dxf];
min (s );

max (s );

[q*r—t ,u—qgxr ];
min(v);

[q*r—w, qx1+w];
((1xj=0)+(i*j+0))/2;
((ar—w)+(axr+w)) /2

((ixj—o)+(qrr—w)))/2;

—c,—f,—e,a,b];
—A+B) 2;
(2
(

i+o)+(qxr+w)) —
—A-B,z—A4+B];
,h, d ,
—A— B—l—z
1/(z—A+B) ) *
A+B)+(z—A-B) ) ;

));

(z —A+B)
+B)+
( /)(Z —A-B))

~(s-A-B))
z—A+B) —(z—A-B))
—A+B +(z—A-B
[al,a2];
min (F);
[((1/E)-G,(1/E)+G];
(((1/E)-G)+((1/E)+G
(g+h)/2;
[((1/E)=G)=g,(
+G)xg, ((1 / E)
min (K);
max (K) ;
[IxJ-L ,M-1xJ];
min (N);
[T+%J-0,IxJ4+0];
(—d—c)/2;
[((1/E)=G)*(—=d) ,((1/E)-G)*(—c),
—d),((1/E)+G)*(—c)];

))/2;

(1/E)=G)*h,
+G)*h];

min (R);
max (R);
[1+Q-S,T-1+Q];
min (U);
[T+Q-V, I«Q+V];

(—f—e)/2;

[((1/E)=G)*(—1), ((1/E)—G)*(—e)7
)G (= 1), ((1/E)+G)*(—e)];
min(Y);

max (Y)

[I+X—aa ,ab—I%X];
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ad = min(ac);

ae = [I*«X—ad, «X+ad];

af = (atb)/2;

ag = [((1/E)=G)*a,((1/E)=G)*b,

)
((1/E)+G)xa,((1/E)+G)*h];
ah = min(ag);

ai = max(ag);

aj = [Ixaf—ah,ai—Ixaf];
ak = min(aj);

al = [Ixaf—ak,Ixaftak];
Z = [PW;ae,al];

end

>> 7 = invs1(1,3,0,1,0,1,3,5)

Z =

0.2308 0.8015
—0.1290 0

—0.1290 0 0.0769
0.4392

>> A=evalin (symengine , 'Dom: :
Interval ([0.2308, 0.8015]))

A:
[0.2308, 0.8015]

>> B=evalin (symengine , "Dom: :
Interval ([—0.1290, 0])’)

B =
[—0.129, 0]

>> C=evalin (symengine , ’Dom: :
Interval ([-0.1290, 0]))

C =
[—0.129, 0]

>> D=evalin (symengine , ’"Dom: :
Interval ([0.0769, 0.4392])")

D =
[0.0769, 0.4392]
>> E = [A, B;C,D]

E =

[ [0.2308, 0.8015], [—0.129, 0]]
[ [-0.129, 0], [0.0769, 0.4392]]

6 Methods to Solve System of
Linear Equations Coefficient
as Intervals

6.1 Determinant Method

Theorem 6.1. Let A’XT = B! be a system of lin-
ear equations involving interval numbers. If the (n x n)
interval matriz Al is invertible then it is possible to

find a smallest box XT = (21, 23, ..., «l), where each
I _ ‘Af(i)|
[ \AI\ )
the it column of A is replaced by the vector BT = (b{,
bl, ..., bl).

A% (i) is the interval matriz obtained when

Proof. Given that A’ is invertible, rlnultiply both
side of the system ATXT = BT by AT . we have

Al AIxI = AlT'pl
1IxI - AlT'pI
X! = AB!
A'BT
X = an
i.e.
:cI{ al{l aéz ain bI{
Ty | _ Ix‘%ll «| @21 @22 A2n by
a;, ahy g, . b,
O
let us consider an example :
[3.7,4.3] [—1.5,—0.5] [0,0]
Al= [—1.5,—0.5] [3.7,4.3] [-1.5,-0.5] |,
[0,0] [—1.5,—0.5] [3.7,4.3]
[—14,14]
b= [—9,9]
[737 3]

|AT| = [37.103, 74.897]

[~14,14] [-1.5,-0.5] [0,0]
| AT = | [-9,9] [3.7,4.3] [-1.5,-0.5]| =
[-3,3] [-1.5,-0.5] [3.7,4.3]
[-317.64,317.64]
[3.7,4.3]  [-14,14] [0,0]
|AT?)| = |[-1.5,-0.5] [-9,9] [-1.5,—0.5]| =
[0,0] [3,3]  [3.7,4.3]
[-271.86,271.86]
[3.7,4.3]  [-1.5,—0.5] [—14,14]
|ATG)| = |[-1.5,-0.5]  [3.7,4.3] [-9,9] | =
[0,0] [~1.5,-0.5] [-3,3]

[-144.77,144.77]

then by the theorem -

of = 0L = [6.988.6.988)]
o = W = [5.981,5.981]
of = W = [3.185,3.185]
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6.2 Jacobi Iterative Method

let AIXT = B, where A! is an interval matrix and
XT and BT are interval vectors.
I I I
aI11 a}2 a}n
Al — g1 Qg ... Aoy | _ (aI) ] ]
= = \%5)1<i<n, 1<j<n
I I I
Gni  Opo - Gy
I
’
I_ | X2 | (.1 .
X! = =(z")1<i<n ;
I
zﬂ,
T
by
I bé I
B' = = (b )1<izn
T
bn
Iterations : Lo
D bl afr ™ age™
1 aiy ajy aiy
L) _ B abel™ el el
2 a§2 ‘152 a£2
wl(nJrl) bfl _ allzi(m . afl nflwf,(_nf
n a£z’n a{l’!‘b ” a{l’n/

Example :
[3.7,4.3]z] + [~1.5, —0.5]2d + [0, 0]x% = [~14, 14]
[-1.5,—0.5]z1 + [3.7,4.3]z5 + [-1.5, —0.5]z% = [9,9)]

[0,0)z] + [~1.5, —0.5]z5 + [3.7,4.3]af = [-3, 3]

First Iteration :
first we take wl(o) [0,0], = I(O) =1[0,0], = I(O) = [0,0]

{0 = gt % ((-14,14] — [~ 1.5, -0.5]25”
- 10,0025
2 = ot x ((—14,14]) = [-3.7436, 3.7436]
(by using modlﬁed interval arithemetic)
I I
25" = g % (79,9 = [1.5,~0.5]2; "
— [~1.5,-0.5]22)
2l = [377143] ([-9,9]) = [—2.4066, 2.4066]
23" = g * ((-3,3] = [-1.5, ~0.5)z,""
—[0,0)z I(O))
wyY = gt % ((-3,3]) = [-0.8022,0.8022]

Second Iteration :
I(2

x1< )= [3.7%443] x ([-14,14] —
— [0,0)5")
21 =10.2326,0.2674] x ([—14,14] — [-1.5, —0.5]

x [ 2.4066,2.4066] — [0, 0] x [—0.8022, 0.8022])
21® = [~4.7089, 4.7089)

I(2
372( )= [37?4.3] x ([-9,9] =

—[~1.5,—0.5]z2™)

22® = [0.2326,0.2674] x ([-9,9] —
x [—3.7436,3.7436] — [~ 1.5, —0.5] x
21 ® = [-4.2299, 4.2299]

[—1.5, —0.5]z®"

[—1.5,—0.5]z1®

[—1.5,—0.5]
[—0.8022, 0.8022])

23 ? = < (F3.3] - [15,-0.5] x5 = [0,01a1 ")
21® = [0.2326,0.2674] x ([—3,3] — [~1.5, —0.5]

X [~2.4066,2.4066] — [0,0] x [—3.7436,3.7436])
22® = [-1.7675,1.7675)

Third Iteration :

21 = ot > (14,14~ [~ 15, ~0.5]25 — [0, 0] )
21® =1[0.2326,0.2674] x ([—14,14] — [-1.5, —0.5]

x [—4.2299, 4.2299] — [0,0] x [~1.7675, 1.7675))

o]® = [~5.4402, 5.4402)

m§<3) _ [3'7}4.3] x ([-9,9] [71.5,—0.5]:3{(2)
[—1.5, —0.5]z4)

22 = [0.2326,0.2674] x ([-9,9] — [~1.5,—0.5] x

[—4.7089,4.7089] — [~1.5, —0.5] x [—1.7675, 1.7675))
223 = [-5.0043, 5.0043]

1 I I
mg(S) = g7y X ([-3,3] = [-1.5,~0.5]z, @ —10,00e,*)
22® = [0.2326,0.2674] x ([-3,3] — [-1.5,—0.5] x

[—4.2299, 4.2299] — [0,0] x
21®) = [~2.4961, 2.4986]

[—4.7089, 4.7089))

after three iterations we get the solution -

x1 = [—5.4402, 5.4402]

xd = [~5.0043, 5.0043]

z§ = [—2.4961, 2.4986]

Convergence of Jacobi Method :

for convergence, matrix will be digonally dominant.
lai1| > |aiz| + |ais]

lass| > |ag1| + |ads|

|a§3\ > \a§1| + \a§2|

min|al;| = 3.7 ; max|al,| + max|als| = 1.54+0 = 1.5 ;

minjal;| > max|al,] + max|afs] this implies
laf1| > |als| + |als| in all cases.

simillarly,

min|aly| = 3.7 ; max|ad;| + max|als| = 1.5+1.5 = 3 ;

min|ady| > max|a;| + max|als]
min|ads| = 3.7 ; max|af;| + max|ad,| = 0+1.5 = 1.5 ;
min|als| > max|ad,| + max|a,|
so matrix is digonally dominant. so this is convergent

6.3 Crout Method

ATx! = B!
’
M= [AI . BT, here M" is a Auxiliary Matrix.
I’ I’ . bI'
aH a9 aqp
I’ I’ I’ .
M]’ _ asq a9 (578 : bg _
1 ! 1’ 1 o 1’
Ayl QApa - Opn by,
1)
(aij '1<i<n, 1<j<n
Methodology :
!
e when i> j; a” = aj -y 1a“,C ks
1’ _ 1’ 17 1
when i<j ; a;; = (a” Zk 1 Qg ;) X 77

o b/ =] - iy al b)) x

= b{/ - ZZ:i+1 afk/xi
Example :
3.7,4.3]  [~1.5,-0.5] [0,0]
Al= [[-15,-05] [3.7,43] [-1.5,-05] |, b'=
[0,0] [—-1.5,—0.5]  [3.7,4.3]
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[—14,14]
[797 9]
[_37 3]

apply above process - we get

, [3.7,4.3][—0.3837, —0.1163] [0, 0] [—3.7436, 3.7436]
Ml = ([71A5, —0.5] [3.2582,4.2418] [—0.4155, —0.1179] [—4.3495, 4.3495])
[0, 0] [-1.5, —0.5] [3.2256, 4.2410] [—2.8573,2.8573]
’
xi = bl = [-2.8513, 2.8573]

- abs @k = [-5.5367, 5.5367 |

ol = bl - aly 2f-aly 2l = [-5.8680, 5.8680]

6.4 Cholesky Method

let A’X' = B'
Interval Matrix A! can be written as product of lower
and upper triangular interval matrix.

a{l a{z a{n l{l 0 0
ab,  dds ... dd, _ By .0
ap1 Gpa e Ghy i e o b
1l o,
oo i,
0 0 .. 1
L'utx! = B?
let UIXT =t = LIt =

Example :

AlxT =pB!
[3.7,4.3]  [-1.5,—0.5] [0,0] zi
[-1.5,-0.5]  [3.7,4.3] [-1.5,—0.5] | x [ =2
[0,0] [-1.5,-0.5]  [3.7,4.3] zi
[—14,14]
= [_979]
[_353]
[3.7,4.3]  [-1.5,—-0.5] [0,0]
[-1.5,-0.5]  [3.7,4.3] [-1.5,-0.5]
[0,0] [-1.5,-0.5]  [3.7,4.3]
i 0 0 1 Uy Uy
=(1, & o] x|lo 1 U
By By I3 0 0 1

I, 1l 1{11{3
=| 15 s+ 121113 + 152153
B Bl + 18y Bilis + Balds + 135

by comparision

l11 =[3.7,4.3] ; I, = [-0.3837, —0.1163] ; I{5 = [0,0]

l21 =[-1.5,-0.5] ; 1%3.2582, 4.2418];

l23 =[- 0 4155 —0.1179]
[0,

14 = : 1%y = [~1.5,—0.5] ; 145 = [3.2256,4.2256]
[3.7,4.3] [0,0] [0,0]
~1. 5 —0 5] [3.2582,4.2418] [0,0]
[-1.5,—0.5]  [3.2256,4.2410]
[1,1] [ 0 3837 ~0.1163] [0,0]
x | [0,0] [1,1] [—0.4155, —0.1179)]
[0,0] [0,0] (1,1]

[—14,14]
L'Uixt = [-9,9]
[_373]
vixt=cf
[—14,14]
L'ct = | [-9,9
[_353]
[3.7,4.3] [0,0] [0,0]
[~1.5,—0.5] [3.2582,4.2418] [0,0]
[0,0] [-1.5,—0.5]  [3.2256,4.2410]
cl [—14, 14]
<[ |=1 [-9,9]
c4 (-3, 3]

solve these equations by using modified interval
arithemetic. we get

el = [-3.7436,3.7436] ; b = [-4.3495,4.3495] ;
¢ = [—2.8573,2.8573]

cl=vulx?!
[1,1] [-0.3837,—0.1163] [0, 0]
[0,0] [1,1] [—0.4155, —0.1179]
[0,0] [0,0] [1,1]
xf
x [ 2
3

solving equations we get -
z1 = [-5.8680,5.8680]

xd = [-5.5367,5.5367)

xl = [-2.8573,2.8573]

7 Conclusion

In this paper, we have derived the inverse of an inter-
val matrix using modified interval arithmetic and devel-
oped matlab code. Then, we have calculated solution of
system of equations with interval coefficient using Deter-
minant Method, Jacobi Iterative Method, Crout Method
and Cholesky Method.
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