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In this correspondence we study a class of quadratic binary functions F2,n from F2n to F2, which

are well-known to have plateaued Walsh spectrum; i.e., for each b ∈ F2n the Walsh transform f̂(b)

satisfies |f̂(b)|2 ∈ {0, 2(n+s)} for some integer 0 ≤ s ≤ n−1. For the type of integers n = q1q2, where
q1, q2 are two different odd primes, we determine possible values of s and present some enumeration
results for counting the number of quadratic functions having those particular form of s.

PACS numbers:

Keywords: Quadratic Boolean functions, s-plateaued
functions, self-reciprocal polynomials.

I. INTRODUCTION

In this correspondence we consider quadratic Boolean
functions Fp,n : Fpn → Fp, given in trace form: defined
by

Fp,n(x) = Tr(

k∑
i=0

aix
pi+1), (1)

where p is any prime, the coefficients a0, . . . , ak ∈ Fp,
and Tr denotes the absolute trace from Fpn to Fp.
The Walsh Transform (or the Fourier Transform) of a
p-ary function
f : Fpn → Fp at a ∈ Fpn is

f̂(a) =
∑
x∈Fpn

εf(x)−Tr(ax)p , (2)

where εp is p-th root of unity. The Walsh spectrum of

f is the set {f̂(a) : a ∈ Fpn}. It is well-known that

for each a ∈ Fpn the Walsh transform f̂(a) satisfies

|f̂(b)|2 ∈ {0, p(n+s)}, where 0 ≤ s ≤ n − 1 is an integer.
Since s is uniquely determined by a given quadratic
function f , we call f s-plateaued.

For p = 2 it is obvious from (2) that f̂(a) for any
a ∈ F2n is an integer. Therefore, the well-known bent
functions or 0-plateaued functions are only defined for
even n when p = 2. 1 or 2-plateaued functions are called
semi-bent. Of course, in that case n and s need to have
the same parity. Semi-bent functions have been studied
widely especially for their importance in cryptography,
see [1, 2, 4–6], and the references therein.
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The question we address here are the following: for
given prime p and an integer n, determine the integers
s giving s-plateaued Fp,n and enumerate such Fp,n for
some particular form of s.

Using standard Welch-squaring techniques one can see
that the integer s is the dimension over Fp of the kernel
of the linear transformation defined on Fpn by

L(x) =

k∑
i=0

(aix
pi + ap

n−i

i xp
n−i

),

where k = b(n− 1)/2c when p = 2 and k = bn/2c when
p ≥ 3. Also the kernel of L has dimension s if and only
if the associates A(x) of L(x) and xn − 1 of xp

n − x,
respectively, satisfy ( see [7])

deg(gcd(A(x), xn − 1)) = s. (3)

The associate A(x) corresponding to Fn in (1) is

A(x) =

k∑
i=0

(aix
i + aix

n−i) = xi0h(x), (4)

where i0 is the smallest integer such that ai0 6= 0, i.e.,
h(0) 6= 0 , and h(x) ∈ Fp[x] is the self-reciprocal polyno-
mial

h(x) =

k∑
i=i0

ai(x
i−i0 + xn−i0−i)

of degree n− 2i0.

II. PRELIMINARIES

In this section we discuss some results on self-reciprocal
polynomials over finite fields. Recall that a polynomial
F (x) with non-zero constant term and of degree m over
a finite field Fpr is self-reciprocal if F (x) = xmF (1/x).
We refer to [3, 7–9] for further reading. But we need to
mention few important results on self-reciprocal polyno-
mials.
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Lemma 1 ([10]). Let F ∈ Fpr [x].

(i) Let F be irreducible and of degree ≥ 2. F is self-
reciprocal if and only if the set of roots of F is closed
under inversion.

(ii) If F is self-reciprocal and G ∈ Fpr [x], then FG is
self-reciprocal if and only if G is self-reciprocal.

(iii) If F is an irreducible self-reciprocal polynomial of
degree m ≥ 2, then m is even.

(iv) If F,G ∈ Fpr [x] are self-reciprocal, then
gcd(F (x), G(x)) is self-reciprocal.

Obviously when p = 2 the polynomial xn + 1 ∈ F2[x]
is self-reciprocal, hence if A(x) ∈ F2[x] is self-reciprocal,
then gcd(xn+ 1, A(x)) is self-reciprocal by Lemma 1(iv).

From equations (3),(4) and properties of self-reciprocal
polynomials we have the following two theorems.

Theorem 1. Let n be an arbitrary integer relatively
prime to p ≥ 3. There exists an s-plateaued quadratic
function Fp,n if and only if

1. xn − 1 has a self-reciprocal factor h(x) of degree s,
or

2. xn − 1 has a self-reciprocal factor h(x) of degree
s− 1 where s < n− 1.

Theorems 1 and (3) show that in order to determine
the integers s for which there exists an s-plateaued
function Fp,n, we need to find self-reciprocal factors
of xn − 1. Hence we need to see the factorization of
cyclotomic polynomials.

Suppose n ≥ 3, and consider

xn − 1 =
∏
m|n

Qm, (5)

where Qm denotes the m-th cyclotomic polynomial. We
then factorize Qm into irreducibles f1 · · · fϕ(m)/d ∈ Fp[x],
each of degree d, where d = ordmp, and ϕ denotes the
Euler-ϕ function. Here ordmp denotes the smallest inte-
ger l, such that pl ≡ 1 mod m. We therefore have

Qm = f1 · · · fϕ(m)/d with ft(x) =
∏
j∈Ct

(x− αj), (6)

where α is a primitive mth root of unity over Fpn ,
and C1, . . . , Cϕ(m)/d are the cyclotomic cosets modulo
m relative to powers of p, containing the elements
relatively prime to m, i.e., C1 = 〈p〉 is the subgroup of
Z∗m generated by p, and C2, . . . , Cϕ(m)/d are its cosets.

Let ν(l) denote the p-adic valuation of an integer l,
i.e., pν(l) is the largest power of p which divides l. In our
result we will only consider the case p = 2.The following
lemma is about the irreducible factors of Qm.

Lemma 2 ([10]). Let m = qe11 q
e2
2 · · · q

ek
k be odd, relatively

prime to p, di = ordqip, 1 ≤ i ≤ k, and d = ordmp.
Suppose the irreducible factors of Qm are f1, . . . , fϕ(m)/d.
Then

(i) The polynomials f1, . . . , fϕ(m)/d are self-reciprocal
if and only if ν(d1) = ν(d2) = · · · = ν(dk) > 0. In
particular, if m is a prime, then f1, . . . , f(m−1)/d
are self-reciprocal if and only if d is even.

(ii) If ν(di) 6= ν(dj) for some 1 ≤ i, j ≤ k, then none
of the polynomials ft, 1 ≤ t ≤ ϕ(m)/d, is self-
reciprocal, and for each t, 1 ≤ t ≤ ϕ(m)/d, there
exists a unique t′ 6= t, 1 ≤ t′ ≤ ϕ(m)/d, such that
the product ftft′ is self-reciprocal.

We need one more lemma for p = 2 before we state the
main result.The proof is obviou.

Lemma 3. The number of self-reciprocal polynomials

over F2 of degree n is 2
n
2 if n is even and 2

n−1
2 if n

is odd.

III. MAIN RESULT

For p = 2 we have the following enumeration result.

Theorem 2. Let n = pq, where p, q are distinct odd
primes and ordp2 = dp, ordq2 = dq. The integer s for
which there exists an s-plateaued quadratic function Fp,n
are given as follows: s < n and

1. if ν(dp) = ν(dq) > 0, then s = 1 + k1lcm(dp, dq) +

k2dp + k3dq, where 0 ≤ k1 ≤ (p−1)(q−1)
lcm(dp,dq)

= γ(pq),

0 ≤ k2 ≤ (p−1)
dp

= γ(p), 0 ≤ k3 ≤ (q−1)
dq

= γ(q)

and the number of s-plateaued functions for that
particular representation of s is

η
l∑

m=0

(−1)m
∑

i+j+k=m
N1≥0

λ2
1
2N1

2. if ν(dp) > 0, ν(dq) > 0 and ν(dp) 6= ν(dq), then
s = 1+2k1lcm(dp, dq)+k2dp+k3dq, where 0 ≤ k1 ≤
(p−1)(q−1)
2lcm(dp,dq)

= γ(pq), 0 ≤ k2 ≤ (p−1)
dp

= γ(p), 0 ≤
k3 ≤ (q−1)

dq
= γ(q) and the number of s-plateaued

functions for that particular representation of s is

η

l∑
m=0

(−1)m
∑

i+j+k=m
N2≥0

λ2
1
2N2

3. if ν(dp) > 0, ν(dq) = 0, then s = 1 +
2k1lcm(dp, dq) + k2dp + 2k3dq, where 0 ≤ k1 ≤
(p−1)(q−1)
2lcm(dp,dq)

= γ(pq), 0 ≤ k2 ≤ (p−1)
dp

= γ(p), 0 ≤
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k3 ≤ (q−1)
2dq

= γ(q) and the number of s-plateaued

functions for that particular representation of s is

η

l∑
m=0

(−1)m
∑

i+j+k=m
N3≥0

λ2
1
2N3

4. if ν(dp) = ν(dq) = 0, then s = 1 + 2k1lcm(dp, dq) +

2k2dp + 2k3dq, where 0 ≤ k1 ≤ (p−1)(q−1)
2lcm(dp,dq)

= γ(pq),

0 ≤ k2 ≤ (p−1)
2dp

= γ(p), 0 ≤ k3 ≤ (q−1)
2dq

= γ(q)

and the number of s-plateaued functions for that
particular representation of s is

η

l∑
m=0

(−1)m
∑

i+j+k=m
N4≥0

λ2
1
2N4

where l = γ(p) + γ(q) + γ(pq)− k1 − k2 − k3 ,

λ =

(
γ(pq)− k1

i

)(
γ(p)− k2

j

)(
γ(q)− k3

k

)
and

η =

(
γ(pq)

k1

)(
γ(p)

k2

)(
γ(q)

k3

)
.

N1 = n − 2i0 − s − ilcm(dp, dq) − jdp − kdq, N2 =
n − 2i0 − s − 2ilcm(dp, dq) − jdp − kdq, N3 = n − 2i0 −
s − 2ilcm(dp, dq) − jdp − 2kdq, N4 = n − 2i0 − s −
2ilcm(dp, dq)− 2jdp − 2kdq.

Proof. We just prove the first case as all the other cases
would have the same arguments.
In case 1, Qp(x) has γ(p),Qq(x) has γ(q) and Qpq(x) has
γ(pq) irreducible self-reciprocal factors respectively. We
need to count the number of self-reciprocal polynomials
g(x) of degree (n− 2i0) such that deg(g(x), xn + 1) = s.
So g(x) = h(x)f(x), where h(x) is product of (x + 1),
k1 irreducible factors of Qpq(x), k2 irreducible factors
of Qp(x) and k3 irreducible factors of Qq(x) and f(x)
is self-reciprocal polynomial which doesnot contain
any irreducible factor of Qp(x), Qq(x) or Qpq(x). Let
f1(x) be the product of remaining irreducible factors of

Qp(x), Qq(x) and Qpq(x)which are not in h(x). Then
number of g = η· number of f.
Number of f = number of self-reciprocal polynomials of
degree (n− 2i0 − s)−
[ ( number of self-reciprocal polynomials of degree
(n− 2i0− s)with one irreducible factor of f1(x)− ( num-
ber of self-reciprocal polynomials of degree (n− 2i0 − s)
with two irreducible factors of f1(x)) + · · · + (−1)m+1 (
number of self-reciprocal polys of deg (n− 2i0 − s) with
m irreducible factors from f1(x)) · · · ]

= 2
n−2i0−s

2 − [(

(
γ(p)− k2

1

)
2

n−2i0−s−dp
2 +(

γ(q)− k3
1

)
2

n−2i0−s−dq
2 +

(
γ(pq)− k1

1

)
2

n−2i0−s−lcm(dp,dq)

2 )

−(

(
γ(p)− k2

2

)
2

n−2i0−s−2dp
2 +

(
γ(q)− k3

2

)
2

n−2i0−s−2dq
2

+

(
γ(pq)− k1

2

)
2

n−2i0−s−2lcm(dp,dq)

2

+

(
γ(p)− k2

1

)(
γ(q)− k3

1

)
2

n−2i0−s−dp−dq
2 +

(
γ(p)− k2

1

)(
γ(pq)− k1

1

)
2

n−2i0−s−dp−lcm(dp,dq)

2

. . .

+

(
γ(pq)− k1

1

)(
γ(q)− k3

1

)
2

n−2i0−s−lcm(dp,dq)−dq
2 )

+(−1)m+1
∑

i+j+k=m
N1≥0

λ2
1
2
N1 · · · ] =

l∑
m=0

(−1)m
∑

i+j+k=m
N1≥0

λ2
1
2
N1

where l = γ(p) + γ(q) + γ(pq)− k1 − k2 − k3 and

λ =

(
γ(pq)− k1

i

)(
γ(p)− k2

j

)(
γ(q)− k3

k

)
and

N1 = n− 2i0 − s− ilcm(dp, dq)− jdp − kdq.

[1] C. Carlet and S. Mesnager, A note on Semi-bent Boolean
functions, Cryptology ePrint Archive, Report no 486.
http://eprint.iacr.org/2010/486.

[2] P. Charpin, E. Pasalic, C. Tavernier, On bent and semi-
bent quadratic Boolean functions. IEEE Trans. Inform.
Theory 51 (2005), 4286–4298.

[3] D. Jungnickel, Finite Fields-Structure and Arithmetic,
BI Wiss. Verlag Mannheim, Leipzig, Wien, Zurich, 1993.

[4] K. Khoo, G. Gong, and D. R. Stinson, A new family
of Gold-like sequences. In Proceedings of IEEE Interna-
tional Symposium of Information Theory (2002), p. 181.

[5] K. Khoo, G. Gong, D. Stinson, A new characterization
of semi-bent and bent functions on finite fields, Designs,
Codes and Cryptography 38 (2006), 279–295.

[6] G. Leander, G. McGuire, Construction of bent functions

from near-bent functions, Journal of Combinatorial The-
ory, Series A 116 (2009), 960–970.

[7] R. Lidl, H. Niederreiter, Finite Fields, 2nd ed., Ency-
clopedia Math. Appl., vol. 20, Cambridge Univ. Press,
Cambridge, 1997.

[8] H. Meyn, On the construction of irreducible self-
reciprocal polynomials over finite fields, Appl. Algebra
Eng. Comm. Comput. 1 (1990), 43–53.

[9] H. Stichtenoth, A. Topuzoğlu, Factorization of a class
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