
Sagdeev Potential Approach for Quantum Dust Ion Acoustic Waves in an
Electron-Positron-Ion-Dusty plasma

Gadadhar Banerjee1∗ and Sarit Maitra2
1Department of Basic Science and Humanities, University of Engineering and Management Kolkata, Kolkata-700160 and

2Department of Mathematics, National Institute of Technology Durgapur, Durgapur-713209

Using the one-dimensional quantum hydrodynamic (QHD) model including the Poisson equation,
Sagdeev’s pseudopotential process is used to explore the propagation features of dust ion acoustic
(DIA) solitary waves in an unmagnetized electron-positron-ion-dusty (e-p-i-d) quantum plasma.
The asymptotic expansion is used to achieve the pseudopotential function for small values of the
parameter H of quantum diffraction. QDIA solitary wave’s existence domain is explored in terms
of real Mach number boundaries. The numerical modeling results demonstrate that the dust grains
can affect not just the amplitude and width, but also the soliton’s domain of existence. The impacts
of the quantum diffraction parameter on the soliton width are also addressed. It is also noted that
the positron density may influence the propagation of the wave.

PACS numbers:

I. INTRODUCTION

Study of nonlinear dust acoustic (DA) and dust ion
acoustic (DIA) coherent structures, like, solitary waves,
double layers have been studied in many scientific ar-
ticles on dusty plasma[1–7]. Dusty plasmas are mainly
constitute with electrons, ions and dust grains. Besides,
the presence of positrons has also been reported in lab-
oratories [8] and also in astrophysical bodies such as ac-
tive galactic nuclei[9], the earlier universe[10], the pulsar
magnetospheres[11], etc. Different kinds of linear and
nonlinear wave constructions were explored in electron-
positron (e-p) and electron-positron-ion (e-p-i) plasmas
where plasma particles often obey Maxwellian velocity
distribution. The strongly charged micron-sized dust
particulates may occur in astrophysical objects along
with electrons, positrons, and ions[12, 13]. The existence
of electron-positron-ion-dust (e-p-i-d) plasma was noted
in various space plasmas, i.e., hot spots on the “dust
ring” in the galactic centre[14], inner areas of accretion
disks close neutron stars and magnetars[15].

Haas et al.[16] studied the one-dimensional quantum
hydrodynamic (QHD) model in the restriction of the
charge carrier’s small mass ratio and briefly discussed
the impacts of the quantum diffraction parameter in
both linear and non-linear quantity plasma environ-
ments. The quantum impacts in plasmas can occur
in varying plasma systems. Quantum plasmas are an-
alyzed primarily through two methods: Quantum Hy-
drodynamic (QHD) approach and the Quantum Kinetic
approach. The mathematical formulation of the QHD
system was provided long ago by Madelung[17]. A spe-
cial force expression in the form of a Bohm potential
gradient[18] appears in the momentum equation owing
to the quantum tunneling effect. As the plasma particles
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follow the Fermi-Dirac distribution, the pressure term
in the momentum equation is described in the Fermi
pressure law. As the plasma particles obey the Fermi-
Dirac distribution, the pressure term in the momentum
equation is described by the Fermi pressure law, which
includes the statistical quantum effects. Thus mathe-
matical formulations for classical plasmas are appropri-
ately altered by including these two quantitative fea-
tures. The linear and nonlinear properties of quantum-
ion-acoustic waves in e-p-i quantum plasmas have been
studied by several authors[19–21]. However, dust impu-
rities may exist in quantum plasmas. Using QHD model
quantum ion acoustic wave has been explored in carbon
nanostructures[22] and metallic nanowires[23].

II. BASIC EQUATIONS

We consider an unmagnetized four-component quan-
tum dusty plasma (QDP) consisting of electrons, ions,
positrons and negatively charged immovable dust parti-
cles. In order to explore QDIA waves in a QDP, the
electrons and positrons are supposed to be inertialess
and the phase velocity of the wave is assumed to be
vFi � ω

k � vFe where vFs is the Fermi velocity of the
electrons(s = e) and ions(s = i). Then the one dimen-
sional quantum hydrodynamic (QHD) model for this sys-
tem is governed by the following equations:

∂ni
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+
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∂2φ

∂x2
= 4πe( ne + Zd0nd0 − ni − np), (5)

where ns, vs, ms are the number density, fluid velocity
and mass of the species electron (s = e) and ion (s = i)
respectively, φ is the electrostatic potential, nd0 is the
equilibrium dust number density, Zd0 is the number of
electrons residing on the dust grains, } is the Planck’s
constant and −e (e) is the electron (ion and positron)
charge. Here me = mp and the electrons (s = e) and
positrons (s = p) are assumed to follow the one dimen-
sional zero-temperature Fermi gas pressure law[24]

pe =
mev

2
Fe

3n2e0
n3e, (6)

where the Fermi electrons (s = e) and positrons (s = p)

velocity is given by vFs =
√

2KBTFs/ms, KB is the
Boltzmann constant and TFs is the Fermi temperature.
The charge neutrality condition at equilibrium is given
by

ni0 + np0 = ne0 + Zd0nd0. (7)

Now, eqs. (1)-(5) can be written in the normalized form
as follows:

∂ni
∂t

+
∂

∂x
(nivi) = 0, (8)
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∂2φ

∂x2
= µe ne − µpnp − ni + µd, (12)

where the wave potential φ, the ion fluid velocity vi and
the number densities ns are normalized by 2KBTFe

e , quan-

tum ion acoustic speed C0 =
(

2KBTFe
mi

) 1
2

and the unper-

turbed number densities ns0 (s = e, i), respectively. The
space and time coordinates are normalized by the ion

Fermi wave length in quantum plasma, λ =
(

2KBTFe
4πni0e2

) 1
2

and ion plasma period ω−1pi =
(

mi
4πni0e2

) 1
2

, respectively.

Here the dust density parameter d = Zd0nd0
ne0

, δ = ni0
ne0

,

p =
np0
ne0

, µe = 1
1−p+d , µp = p

1−p+d , µd = d
1−p+d electron

plasma period ωpe =
(

4πne0e
2

me

) 1
2

and the nondimensional

quantum parameter H is defined as H =
}ωpe

2KBTFe
. The

charge neutrality condition (7) implies δ = 1 − p + d.
The Fermi temperature TFs (s = p, e) is defined as

KBTFs = }2(3π)
2
3 n

2
3
s

2m , σ =
TFp
TFe

= p2/3.

III. OBTAINING SAGDEEV POTENTIAL

For obtaining the traveling wave solutions of the eqs.
(8)-(12) that are stationary in a frame moving with a
velocity M , we assume that all the dependent variables
depend on ξ = x−Mt, M being the Mach number nor-
malized to the quantum ion acoustic speed Cs. Then eqs.
(8) and (9) reduce to

ni =
M

M − vi
, (13)

(vi −M)
2

= M2 − 2φ, (14)

where we have imposed the boundary conditions ni →
1, vi → 0 and φ → 0 as ξ → ±∞. Then eqs. (13) and
(14) imply

ni =
1√

1− 2φ
M2

, (15)

Eqs. (10) and (11) reduce to
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where we have imposed the boundary conditions, φ →
0, ne → 1, np → 1, ∂2

∂ξ2

(√
ne
)
→ 0 and ∂2

∂ξ2

(√
np
)
→ 0

as ξ → ±∞. By observing the nature of the terms of eq.
(16), it is expected that ne must be a function of φ. So
for small value of H, we suppose

n2e = f0(φ) +H2f1(φ) +O(H4), (18)

where f0(φ) is the electron number density at H = 0 and
O(H4) term is neglected. Using eq. (18) in eq. (16) and
comparing the coefficients upto the order of H2 we get

f0(φ) = 1 + 2φ, (19)

f1(φ) =
1

δ
(1 + 2φ)

− 1
4
∂2

∂ξ2
(1 + 2φ)

1
4 , (20)
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Then, eq. (18) implies

n2e = 1 + 2φ+
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]
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In a similar way the positron density expression is ob-
tained as
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σ
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(
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σ

) 1
4

]
.

(22)

Eqs. (21) and (22) express the electron and positron
densities as a function of the electrostatic potential which
are derived on the basis of the semiclassical limit where
H is taken to be small[19, 25]. Now substituting the
density expressions from eqs. (15), (21) and (22) in the
Poisson equation, we obtain
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σ

) 1
4

]
− 1√
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+ µd. (23)

To obtain the Sagdeev potential function V (φ), which
satisfies the energy integral form

1

2

(
dφ

dξ

)2

+ V (φ) = 0, (24)

we suppose

V ′ (φ) = −d
2φ

dξ2
(25)

and so

V (φ) = −1

2

(
dφ

dξ

)2
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Here the charge neutrality condition gives

V (0) = V ′ (0) = 0. (27)

Making use of eqs. (26) and (25), eq. (23) reduces to
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δ

[
3 V (φ)
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2 −

V ′ (φ)
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]

+µp
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σ

)
+
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2σ3
(
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σ
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2σ2
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σ

)
+

1√
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Here, first neglecting the quantum diffraction effect (i.e. H = 0) from the above eq. (28), we get

V0
′ (φ) = −µe

√
(1 + 2φ) + µp

√(
1− 2φ

σ

)
+

1√
1− 2φ
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where V ′0(φ) denotes V ′(φ) at H = 0. Integrating eq. (29) and using the condition (27), we get

V0 (φ) =
1

3
µe

[
1− (1 + 2φ)

3/2
]

+
1

3
µpσ

[
1−

(
1− 2φ

σ

)3/2
]

+M2

[
1−

√
1− 2φ

M2

]
− φµd. (30)

In order to obtain V (φ), on the basis of the semiclassical
limit where H is taken to be small so that the terms of
O(H4) can be neglected, we suppose that

V (φ) = V0 (φ) +H2V1 (φ) +O(H4). (31)

Then eq. (28) implies
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√√√√(1 + 2φ) +
H2

δ

[
3 V0 (φ)

2(1 + 2φ)
2 −

V ′0 (φ)
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]

+µp
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σ
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+
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δ

 3 V0 (φ)
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σ

)2 +
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2σ2
(
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σ

)
+

1√
1− 2φ

M2

− µd. (32)

The above equation (32) is valid only in the semiclassical
limit of H where the accuracy is upto the order of H2.
Then V (φ) is obtained from eq. (32) by numerical inte-
gration. It is observed from the density expressions (15),
(21) and (22) that in order to prevent wave braking there

are limitations on φ that − 1
2 < φ < min

{
σ
2 ,

M2

2

}
.
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FIG. 1: Variation of critical Mach number Mc against p.
Here, H = 0.087, d = 0.2.

To study the existence of solitary waves, we analyze
the Sagdeev potential V (φ) which satisfy the following
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FIG. 2: Variation of critical Mach number Mc against H.
Here, p = 0.25, d = 0.2.

Sagdeev’s conditions[26]

(i) V ′′ (φ) < 0 at φ = 0, so that the fixed point at the
origin is unstable.

(ii) ∃ a nonzero φm, the maximum (or minimum) value
of φ, at which V (φ) = 0.

(iii) V (φ) < 0, for 0 < |φ| < |φm|.

Condition (i) gives the lower limit of M for existence of
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solitary waves as M > Mc where

Mc =

√√√√√√√
1− H2

4
√
1−H2

+
H2µp

4σ2µe

√
1+H2

σ2

µe
2
√
1−H2

{
2 + 2H2 + H2

2µe

(
µe(1−σ)−1

σ

) }
− p−d

2
√

1+H2

σ2

{
− 2
σ + 2H2

σ3 − H2

2µeσ2

(
µe(1−σ)−1

σ

)} . (33)

Here for H = 0, we have Mc =
√

σ
µe(1+σ)−1 which is

similar as obtained by Popel et al.[27]. In absence of
positron and dust, i.e. if p→ 0 and d→ 0, Mc → 1 which
is obtained same as that of simple electron-ion plasmas.

IV. NUMERICAL RESULTS AND DISCUSSION
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FIG. 3: Variation of critical Mach number Mc against d.
Here, p = 0.25, H = 0.087.

The numerical findings have been addressed in this sec-
tion. The values of the parameters are taken as[20, 25,
28, 29]: ne0 ∼ 5 × 1029, np0 ∼ 0.2ne0 TFe ∼ 108K,
Zd0 ∼ 103. It is noted from eq. (33) that the criti-
cal Mach number depends upon the quantum diffraction
parameter H, the positron-ion density ratio p and dust-
ion density ration d. The variation of the critical Mach
number Mc with p, H and d is plotted in Fig. 1, Fig.
2 and Fig. 3, respectively. It is found that the critical
Mach number decreases with the increase in positron-
electron density ratio, whereas it increases due to the
increase in H and d. It should be pointed out here that,
since the value of M depends on a particular normaliza-
tion, some care should be given to interpret the outcomes
physically. So the true Mach number in the system is de-
scribed by the ratio M/Mc. From this proportion, the
reference velocity of C0 used in the normalization of M
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FIG. 4: Plot of V (φ) for different values of p. Here, H =
0.087, d = 0.2.
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FIG. 5: Plot of V (φ) for different values of d. Here, H =
0.087, p = 0.25.

disappears[30, 31]. Thus the existence condition for soli-
tary waves M > Mc implies that the true mach number
M/Mc > 1. In Fig. 4, the Sagdeev potential V (φ) is
plotted for different values of p keeping other parameter
values fixed. It is observed that as positron density in-
creases the amplitude of the solitary wave decreases. On
the other hand, it has been observed from Fig. 5, where
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FIG. 6: Plot of V (φ) for different values of H. Here, p = 0.25,
d = 0.2.

V (φ)s are plotted for different values of d, that the ampli-
tude of the solitary waves increases with increasing dust
density, keeping other parameter values fixed. In Fig.

6, V (φ)s are plotted for different values of H. Here we
found that in the given range of quantum diffraction pa-
rameter H, very small change in solitary wave amplitude
has been observed.

V. CONCLUSIONS

In this paper, the propagation properties of the QDIA
solitary wave have been explored by using Sagdeev’s
pseudopotential technique along with the Poisson equa-
tion in an unmagnetized e-p-i-d plasma. Here, the
asymptotic expansion method, for small values of the
quantum diffraction parameter H, have been used to ob-
tain the Sagdeev potential. Existence of arbitary am-
plitude solitary wave have been predicted, theoretically.
The amplitude of the electrostatic potential framework
is also improved owing to the presence of dust particles
and positrons in quantum plasmas. Small impacts of the
quantum diffraction parameter on the soliton amplitude
are also noted.
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